13 research outputs found

    Fab-based bispecific antibody formats with robust biophysical properties and biological activity

    Get PDF
    A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity

    A humanized CD3ε-knock-in mouse model for pre-clinical testing of anti-human CD3 therapy.

    No full text
    Pre-clinical murine models are critical for translating drug candidates from the bench to the bedside. There is interest in better understanding how anti-human CD3 therapy works based on recent longitudinal studies of short-term administration. Although several models have been created in this pursuit, each have their own advantages and disadvantages in Type-1 diabetes. In this study, we report a murine genetic knock-in model which expresses both a murine and a humanized-CD3ε-exon, rendering it sensitive to manipulation with anti-human CD3. These huCD3εHET mice are viable and display no gross abnormalities. Specifically, thymocyte development and T cell peripheral homeostasis is unaffected. We tested immune functionality of these mice by immunizing them with T cell-dependent antigens and no differences in antibody titers compared to wild type mice were recorded. Finally, we performed a graft-vs-host disease model that is driven by effector T cell responses and observed a wasting disease upon transfer of huCD3εHET T cells. Our results show a viable humanized CD3 murine model that develops normally, is functionally engaged by anti-human CD3 and can instruct on pre-clinical tests of anti-human CD3 antibodies

    Fab-based bispecific antibody formats with robust biophysical properties and biological activity

    No full text
    A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with C(H)1/C(L) domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity
    corecore